AmSys Leak Detection Unit (amsys.no)

Main features

Rekordbot etter fiskedød

release of ammonia ve

resulted in dead fis

Ammoniakklekkasje på Rud

TIET I ASKER OG BÆRUM HENDELSESLOGG

Av RICHARD SVEAAS DALE og CHRISTIAN BREVIK19. august 2016, kl. 07:52 V

Det skal ikke være fare for lekkasie til avløpsnettet etter at 50-100 liter ammoniakk har lekket ut fra et West End Bakery på Rudsletta.

DEL Vakthavende brannsjef, Sverre Junker, forteller at brannvesenet har kontroll og at lekkasjen er stoppet.

- Vi har stengt lekkasje fra to ventiler og er i gang med utlufting. Det er ikke fare for at ammoniakken har gått i andre avløp, sier Junker.

1 2005 lekket rundt 500 liter med amonikk fra West End Bakery ut i Sandvikselva. Den gang døde alle fisk elven mellom Rud og Kadettanger

AmSys

Adaptive Measurement Systems

Tens of thousands of fish pulled from polluted waterway following ammonia leak at Wuhan chemical plant

By Ewan Palmer 6 September 4, 2013 12:48 BST

A worker clears dead fish floating on the banks of the polluted Fuhe river in Wuhan, Hube province (Reuters)

» News » World Home

f 🔰 8+ 🥶 in

Thousands of fish die after ammonia leak

BBB O Storin

thousands of fish.

River Leadon ammonia leak kills

Bucharest - From Friday's Globe and Mail Published Friday, Feb. 16, 2001 12:00AM EST Last updated Saturday, Mar. 21, 2009 9:31AM EDT Earth

The AmSys solution for leak detection:

- Can be used in all systems where heat exchanger leakage may be detected as change in conductivity. Typical examples are:
- ammonia into freshwater, seawater, spillwater etc.
- ammonia into cooling and heating circuits
- Seawater into freshwater

Detecting devices and warning systems are required according to EN 378-3.

 According to EN 378-3 section 8, heating/cooling systems with more than 500 kg ammonia (R717) ammonia, detection must be installed the cooling / heating secondary circuits.

AmSys background:

 Based on experience from a heat exchanger leakage in 2012 into a district heating system in Norway (5MW heat pump).

Deres prøvenavn	Varm Fjerr	nepumpesentral Ivarmevann					
Labnummer	N001	40665					
Analyse		Resultater	Usikkerhet (±)	Enhet	Metode	Utført	Sign
Ammonium (NH4)		78.7	15.7	mg/l	1	1	MOSA
рН		10.1	0.08		2	1	MOSA

- Installed detector (electrolytic) did not give any warnings/alarms of the leakage.
- After this incidence, a lot of effort and money were spent on finding better and more reliable solutions.
- The *AmSys* solution is the result from this experience and 5 years of further development.

Unmatched sensitivity and stability!

- High accuracy process model increase sensitivity typically by factor 20-100 compared to alternative systems.
- Virtually no need for sensor maintenance.
- Adaptive functionality compensates for sensor fouling, water quality drift etc. and ensures «lifetime» sensitivity in most fluids with virtually no maintenance or additional cost.
- Preliminary tests on ammonia in seawater indicates 5-20 ppm as practical detection limit, depending on seawater salinity. This is well below usual recommended limits!

Water type:	Normal conductivity	Typical sensitivity to NH3, ammonia	Practical detection limit (alarm limit)
«Scandinavian» tap water (surface)	50-100 micS/cm @ 25 °C	0.1-0.2 ppm	0.5-1 ppm
«European» tap water (ground water)	200-300 micS/cm @ 25 °C	0.4-0.8 ppm	2-4 ppm
District Heating systems (according to recomendations)	50-80 micS/cm @ 25 ℃	0.1-0.2 ppm	0.5-1 ppm
Demineralized boiler feed water steam condensate	0.5-1 micS/cm @ 25 °C	<0.01 ppm	<0.1 ppm

Strong improvement in sensitivity to any substance that gives conductivity change, like seawater, oil, etc. AmSys Adaptive Measurement Systems

Advantages with the *AmSys* solution:

- Early detection of defective heat exchangers saves environment and money spent on downtime and troubleshooting.
- Virtually maintenance free. Currently available systems (electrolytic, PH) require a lot of maintenance and have a number of limitations in terms of sensitivity and response time (limited by sampling interval) as well as pressure and temperature limitations.
- Advanced adaptive process model based on statistical and Kalman filter techniques gives unmatched performance and sensitivity that is maintained over time.

Temperature compensation is important!

- Traditionally a 2% fixed value is used for compensation
- BUT: Temperature compensation factor varies with fluid and sensor characteristics.
- Nonlinear compensation optimal at temperature variation > 10-15 °C.
- Typical cause for change:
 - Water; seasonal changes og chemical treatment
 - Sensor; fouling or wear
- <u>One of the features in the AmSys system is</u> automatic/adaptive determination of linear and nonlinear compensation factors.
- Factors are automatically updated if fluid or sensor changes (eg. by fouling)

From Reagecon

Adaptive function gives unmatched signal to "noise" (error) ratio by:

(%) in comp

- Compensation of deviation and drift due to sensor difference and slow changes in water quality, sensor wear, sensor position, fouling etc.
- Optimal linear/nonlinear temperature compensation
- Transport time error is minimized/eliminated.
- Dynamic errors due to heat transfer, dead time etc. minimized/eliminated.
- Compensation of conductivity changes.

Temperature change rate (degC/min)

— Sensor time constant = 20

-Sensor time constant = 10s

25

Alarm limits may be significantly reduced :

Measured conductivity difference: AmSys (red) vs. traditionally compensated conductivity measurements (blue)

AmSys Adaptive Measurement Systems

System drawing:

Alarms and compensated values

Series and parallell systems

Amsys vs standard temperature compensation (2.2% linear)

Standard compensated contuctivity (2.2% linear compensation)

Compensated conductivity from **Amsys** model (red)

AmSys Compensat Adaptive Measurement Systems

Temperature OUT

13

°C

μS/cm

μS/cm

0-20

(-100) - 100

(-100) - 100

Ammonia: 2.9ppm into 1000 μ S/cm water, 0.9ppm when dilluted into total system (small test system)

Value	Trend scale	Unit
«OUT sensor» compensated conductivity from Amsys model (white)	980-1020	μS/cm
«IN sensor» compensated conductivity from Amsys model	980-1020	μS/cm
Standard compensated contuctivity (2.2% linear compensation)	(-100) — 100	μS/cm
Compensated conductivity from Amsys model (red)	(-100) — 100	μS/cm

AmSys model vs simple difference calculation

Temperature variations only:

Simple difference calculation:

AmSys model:

197 μS/cm 8.2 μS/cm

Adding ammonia:

Adding 2.9ppm ammonia into same water (1000 μ S/cm) : 24 μ S/cm

AmSys main screen

Basic setup:

Basic setup Compensation reference temperature Conductivity difference, filter time:	25 30.0	degC SeC.			
Manual/active compensation facto	rs INLET:	OUTLET:			
Temp compensation factor: Active parameters are nonlinear:	1.5891 NO	1.4854 NO	% / degC		
INLET -OUTLET static difference:	Sava	0.670	mS/cm		
Save active parameters: Save All View & Restore Flow delay compensation 0.030 m ³					
	y sensors.		1 Poturn		
	 Basic setup Compensation reference temperature Conductivity difference, filter time: Manual/active compensation facto Temp compensation factor: Active parameters are nonlinear: Update parameters from model: INLET -OUTLET static difference: Save active parameters: Flow delay compensation Volume of water between conductivity 	Basic setup Compensation reference temperature (HX1&HX2): Conductivity difference, filter time: Manual/active compensation factors INLET: Temp compensation factor: Active parameters are nonlinear: NO Update parameters from model: INLET -OUTLET static difference: Save active parameters: Save Active parameters: Save Active parameters:	Basic setup Compensation reference temperature (HX1&HX2): 25 Conductivity difference, filter time: 30.0 Manual/active compensation factors INLET: OUTLET: Temp compensation factor: 1.5891 1.4854 Active parameters are nonlinear: NO NO Update parameters from model: Image: Compensation factor: 0.670 Save active parameters: Save All Image: Compensation factor: Flow delay compensation 0.030 0.030		

Model setup

Time horizion. Maximum age of values used for adaptiv functionality.

Parameters to control model quality and use

Model status

AmSys Adaptive Measurements HX2

Model database control

Maximum age of data in model: Init filters:	24.000 hou	Init filters
Flow based model control Minimum flow for flow delay calulation :	5.000 % (of	Al max range)
Freeze model when; flow <minimum< td=""><td>any alarm is acti</td><td>ve: 🗌</td></minimum<>	any alarm is acti	ve: 🗌
Model status	IN	Ουτ
Model updating:	YES!	YES!
Temperature difference dTemp	2.9389219	2.9351721
Linear R^2 from model:	0.0000000	0.000000
Nonlinear R^2 from model:	0.0000000	0.0000000
Status available:		
Status active:		
A	dvanced setup	HX1 Return

Other features in the *AmSys* system:

- Trend tool
- Alarm system
- Benchmark calculations
- Save/restore parameters
- AmSys Adaptive Measurements HX1 State ACK Action Status Dig. Output Alarm conditions 2 0 Conductivity difference, dATC value filter: activate (= ATCout - ATCin) 0 sec. 1 2 0 Enabled OFF -0.011 mS/cm -0.011 mS/cm 0 Enabled OFF AmSys Adaptive Measurements HX1) :e Limit Status 0.000 0 0.50000 A 0.000 0 Enabled OFF 0.250000 3.000 6.000 Return to HX2 Return to HX1 0.000000 Active abeled AmSys Adaptive Measurements HX1 abeled Active ents HX2 ession setup HX2 Return 22:25:59 Alarm system on parameters - - - - - kT Active (%) Static difference AT at Tref Conductivity difference Active: 11.232 1.57607 Analog inputs Heat Ex Inlet Conductivity TActive: 10.576 1,48035 0.657 X2 Return Heat Ex Outlet Conductivity Basic setup Current model values Model setup Static Conductivity Difference AT at Tref kT (%) r² Comp. IN lin: 11.232 0.00000 0.99911559 OUT lin: 10.576 0.00000 1.00068212 Alarm supression IN NonLin: 10.981 0.00000 0.00000000 Alarm HMI control Parameters OUT NonLin: 10.360 0.00000 0.00000000 Alarm history Benchmark Flow delay compensation Flow: m³/h Test Level 2 3.5 Calculated flow delay: 30.9 Sec. HX1 Return Trend HX2 Return
- Modbus TCP/RTU
- +++

Alarm Status Viewer

ΙE

Sensor mounting on pipe

- Mount on side of horizontal • pipe to avoid trapped air and sludge
- Sensor mounting through ball • valve possible.
- **Option: Retractable sensor** • allow changing sensor directly mounted on pipe with up to **3-4 bar pressure. (PN16 when** in operation)

INSTALLATION – 141 SENSOR

- Install the sensor in a 3/4-inch NPT weldalet or in a 1-inch pipe tee. 2.
- Remove the plastic shipping cap from the sensor.

β. Screw the sensor into the fitting. Use pipe tape on the threads. See Figure 3.

INSTALLATION – 142 SENSOR

- Install the sensor in a 3/4-inch NPT weldalet or in a 1-inch pipe tee. See Figure 4.
- Remove the plastic shipping cap from the sensor.
- Screw the sensor into the fitting. Use pipe tape on the threads. DO NOT tighten the sensor compression fitting until the sensor is correctly positioned.
- If necessary, loosen the sensor compression fitting and position the sensor so that the tip of the sensor is at least 1-inch (25 mm) from the far wall of the pipe
- Tighten the compression fitting using the procedure shown in Figure 2.

Sensor Orientation

Keep ¼ in. (6 mm) clearance between electrodes and piping. The electrolytes must be completely submerged in the process liquid, i.e., to the upper edge of the guard (item 10 in Figure 3).

All ilustrations are from Emerson

System with instrument-pump

- Option (normally not needed).
- Small pump, approx. 10W in sensor circuit.
- Simple and safe inspection/ cleaning/service of sensors.
- Reduced error at low flow (low heat transfer -> variable time constant, high influence from ambient temperature)
- Continuously varying conductivity may be stabilized for a period in order to update sensor model.

Heat Exchanger

Other applications for the *AmSys* solution:

- Heat exchanger leakage detection is a typical application, but the technology is general and may be used to increase accuracy in all conductivity measurement applications to improve measurement stability and accuracy.
- Sensitivity and measurement accuracy is often improved by a factor 20-100 compared to traditional conductivity measurements. Early alarm from small contaminations provides optimal protection of environment and equipment.

